

EXAMINATIONS COUNCIL OF ESWATINI Eswatini General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
PHYSICAL SCI	ENCE		6888/02
Paper 2 Structu	red Questions	Oct	ober/November 2022
			1 hour 15 minutes
Candidates ans	wer on the Question Paper.		
No Additional M	aterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and candidate name in the spaces provided.

Write in dark blue or black pen.

You may use a HB pencil for any diagrams, graphs, tables or rough working.

Do **not** use staples, paper clips, highlighters, glue or correction fluid.

Do **not** write on the barcode.

Answer all questions.

You may use an electronic calculator.

A copy of the Periodic Table is printed on page 14.

You may lose marks if you do not show your working or if you do not use the appropriate units.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of 14 printed pages and 2 blank pages.

© ECESWA 2022 [Turn over

1 Table 1.1 shows some physical properties of metals **A**, **B**, **C** and **D**.

Table 1.1

metal	density/g/cm ³	melting point/°C	hardness	colour of metal salts
Α	0.89	63	soft	white
В	8.96	1083	hard	blue
С	1.74	670	hard	white
D	0.97	98	soft	white

(a)	(i)	Identify a Group I metal from Table 1.1 using the letters A, B, C or D.	
		Give a reason for your answer.	
		metal	
		reason	[2]
	(ii)	Identify a transition metal from Table 1.1 using the letters A, B, C or D.	
		Give a reason for your answer.	
			[2]
(b)		lain, in terms of metallic bonding, why all the metals in Table 1.1 are good ductors of electricity.	
			[2]
(c)	Elec	ctrical conductivity is a physical property of metals.	
	Stat	te two other physical properties of metals not shown in Table 1.1.	
	1		
	2		[2]

2	Wav	ves n	nay be classified as transverse or longitudinal.	
	(a)	(i)	Explain the difference between transverse and longitudinal waves.	
		/::\	Ctate and example of a longitudinal ways	. [2]
		(11)	State one example of a longitudinal wave.	[1]
	(b)	(i)	A water wave with a frequency of 5 Hz travels at a speed of 15 m/s.	. [']
			Calculate the wavelength of the water wave.	
				[0]
		/ii\	A light ray enters a beaker of water at an angle of 30° to the normal.	. [2]
		(11)	Water has a refractive index of 1.33.	
			Calculate the angle of refraction for the light ray.	
				. [3]
				r-1

3 Lungi receives a letter.

She investigates inks from pens belonging to students ${\bf L},\,{\bf M},\,{\bf N}$ and ${\bf Q}.$

Fig. 3.1 shows a chromatogram of the inks from the pens of students L, M, N and Q.

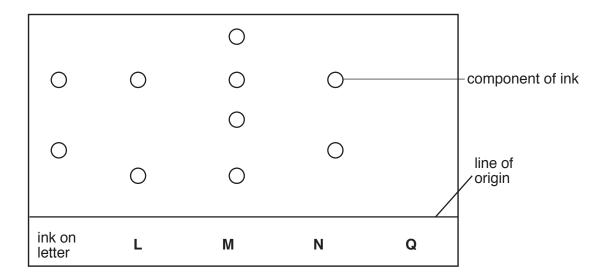


Fig. 3.1

(a)	Suggest a suitable solvent the student uses to obtain the chromatogram.	
	[1]
(b)	Explain why student ${\bf N}$ is the one that wrote the letter.	
	[1]
(c)	The ink samples are placed on the line of origin slightly above the solvent line.	
	Explain why the line of origin is slightly above the solvent line.	
	[2]
(d)	The components of the ink from student Q are invisible in the solvent.	
	Describe how the components of the ink can be made visible.	
	[·	21

[1]

4 Fig. 4.1 shows a simple electromagnet with a plotting compass next to it.

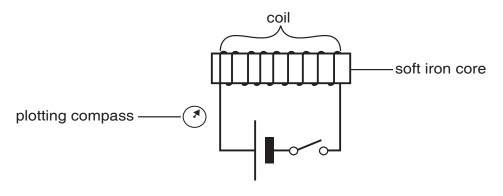


Fig. 4.1

	 	 	[1]

1

2[2	2]
-----	----

(c) Explain why soft iron is used as a core.

.....[1]

(d) When the switch is closed, the needle of the plotting compass deflects.

(e) Draw, on Fig. 4.2, the poles of the soft iron core when the switch is closed.

(b) State **two** ways of increasing the strength of the electromagnet.

Explain why the needle deflects.

(a) Name a suitable material for the coil.

.....[3]

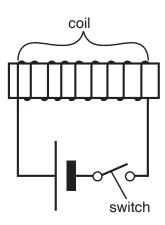


Fig. 4.2

5 Fig. 5.1 shows the structures of two allotropes of carbon, graphite and graphene.

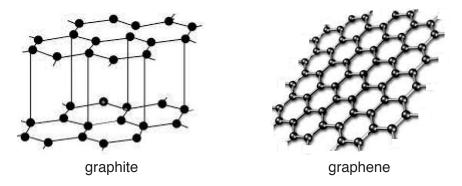


Fig. 5.1

 6

Rac	dioactive emission occurs randomly over space and time.	
(a)	Describe radioactive emission.	
		[2]
(b)	Alpha and gamma radiation are examples of radioactive emissions.	
	Describe the behaviour of alpha and gamma radiation in an electric field.	
		[3]
(c)	Radioisotopes are used to detect leaks from pipes carrying water.	
	Describe how radioactive isotopes are used to detect leaks from water pipes.	
		[3]

- 7 Hydrocarbons are organic compounds.
 - (a) A hydrocarbon is made up of 85.7% carbon and 14.3% hydrogen by mass.
 - (i) Calculate the empirical formula of this hydrocarbon.

																									 															Γ	3	3	l
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	_			-	-	-	-	-	-	-	-	-		-	-	-	-	L	_	٠.	J

(ii) The hydrocarbon has a molecular mass of 70.

Determine its molecular formula.

.....[2]

(b) An alkane with ten carbon atoms undergoes cracking to form a mixture of gases.

Ethene is one of the gases produced.

The experimental set-up is shown in Fig. 7.1.

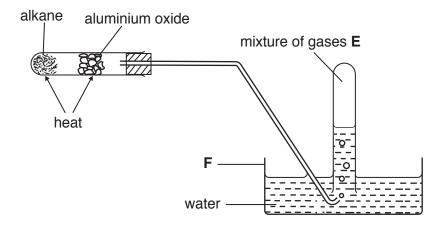


Fig. 7.1

(i) Name apparatus F.

_____[1]

	(ii)	The ethene in E decolourises bromine water.	
		Draw the functional group of hydrocarbons in the same homologous series as ethene.	
		r ₄ .	1
	(iii)	Name the other product of the cracking process.	l
		[1]	
(c)	Ethe	ene undergoes addition polymerisation to form poly(ethene).	
	(i)	Describe addition polymerisation.	
		[2]	
	(ii)	Draw the structure of poly(ethene) [1]	
	(iii)	Explain why poly(ethene) causes serious pollution problems.	
			-
		[2]	l

- 8 An electric bell has a rating of 240 V, 0.7A.
 - (a) Calculate;
 - (i) its resistance,

.....Ω [2]

(ii) the charge moving in the circuit, if the bell is switched on for 2 minutes.

.....[3]

(b) The electric bell is connected with two appliances having resistance of 6Ω and 3Ω as shown in Fig. 8.1.

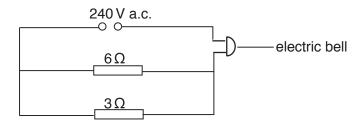


Fig. 8.1

(i) Calculate the combined resistance of the two appliances.

.....Ω [2]

(ii) One of the appliances has a step-down transformer which transforms 240 V to 12 V.

Calculate the number of turns in the secondary coil if the primary coil has 1000 turns.

.....[2]

9	(a)		en copper(II) carbonate undergoes thermal decomposition to form black copper(II) e as one of the products.
		(i)	Name the other product of this reaction.
		(ii)	Explain why the thermal decomposition of copper(II) carbonate is a chemical change.
			[1]
	(b)	Calo	cium carbonate also undergoes thermal decomposition.
			cribe one similarity and one difference in the thermal decomposition of copper(II) conate and calcium carbonate.
		simi	larity
		diffe	rence
			[2]
	(c)		copper(II) oxide formed can react with hydrochloric acid to form a soluble salt, per(II) chloride.
		Exc	ess copper(II) oxide is used in this reaction.
		(i)	Describe how pure crystals of copper(II) chloride can be prepared.
			[3]
		(ii)	The copper(II) oxide is used as a powder to increase the rate of the reaction.
			State two other factors that can increase the rate of the reaction.
			1
			2[2]

10 Lunga moves a wire, GH, such that it cuts across a magnetic field as shown in Fig. 10.1.

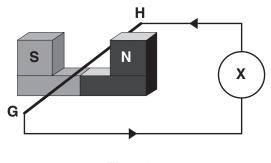


Fig. 10.1

The movement of the wire induces an electromotive force (e.m.f) in the wire.

(a)	State one way in which the induced e.m.t can be increased.	
		. [1]
(b)	Name the instrument that Lunga should connect at ${\bf X}$ in Fig. 10.1 to measure the charge generated.	
	Give a reason for your answer.	
	name of instrument	
	reason	

(c) Draw, in Fig. 10.2, the magnetic field lines between the poles of the magnet $\bf S$ and $\bf N$. [3]

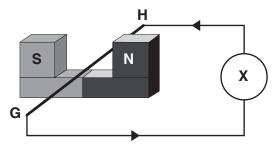


Fig. 10.2

(d) Fig. 10.3 shows the direction of the induced current in the wire.

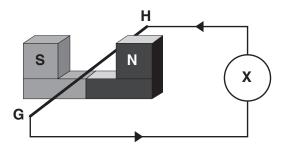


Fig. 10.3

Indicate on Fig. 10.3, using an arrow, the direction of movement of the wire **GH** in order for the current to be induced in the direction shown. [1]

DATA SHEET
The Periodic Table of the Elements

						1.	4												
	Key		* 58–7 † 90–1	223 Fr Francium 87	133 Cs Caesium	Rb Rb Rubidium	39 Rotassium 19	Lithium 3		_									
Б	∀ × a		1 Laı	88	56	(2)	20	4 50											
_ b			nthanc	226 Ra Radium	137 Ba Barium	88 Strontium	40 Calcium	Be Beyllium 4 24 Mg Magnesium 12		=									
b = atomic (proton) number	(= atomic symbol	X = atomic symbol	a = relative atomic mass Y = atomic symbol	= relative atomic mass	= relative atomic mass	= relative atomic mass (= atomic symbol	= relative atomic mass	= relative ator	= relative ator = atomic sym	= relative ator	* 58–71 Lanthanoid series † 90–103 Actinoid series	227 Ac Actinium 89 †	139 La Lanthanum *	89 Yttrium	45 Sc Scandium				
										178 Hf Hafnium	91 Zr Zirconium 40	48 Titanium 22							
Thorium 90	ᆉ	232	140 Ce Cerium		181 Ta Tantalum	93 Nb Niobium	Vanadium 23												
Protactinium 91	Pa	231	141 Pr Praseodymium 59		184 W Tungsten	96 Mo Molybdenum 42	52 Cr Chromium 24												
Uranium 92	<u>_</u>	238	Neodymium 60		186 Re Rhenium	Tc Technetium	Mn Manganese 25												
Neptunium 93	Np	237	Pm Promethium 61		190 Os Osmium	101 Ru Ruthenium	56 TO Iron		1 Hydrogen										
Plutonium 94	Pu	244	150 Sm Samarium 62		192 Ir Ir	103 Rh Rhodium	59 Co Cobalt				Gro								
Americium 95	Am	243	152 Eu Europium 63		195 Pt Platinum	106 Pd Palladium	Nickel				Group								
Curium 96	Cm	247	157 Gd Gadolinium 64		197 Au Gold	108 Ag Silver	64 Cu Copper												
Berkelium 97	BK	247	159 Tb Terbium 65		201 Hg Mercury	112 Cd Cadmium 48	65 Zn Zinc												
Californium 98	Ω	251	163 Dy Dysprosium 66		204 T/ Thallium	115 In Indium	70 Ga Gallium	Boron 5 Aluminium 13		≡									
Einsteinium 99	Es	252	165 Ho Holmium 67		207 Pb Lead 82	119 Sn Tin	73 Ge Germanium	12 Carbon 6 Carbon Silicon		<									
Fermium 100	Fm	257	167 Er Erbium 68		209 Bi Bismuth	Sb Antimony	75 AS Arsenic	Nitrogen 7 Nitrogen 7 Phosphorus 15		<									
Mendelevium 101	Md	258	Tm Thulium		209 Po Polonium 84	128 Te Tellurium	79 Se Selenium	Oxygen 8		≤									
Nobelium 102		259	173 Yb Ytterbium		210 At Astatine 85	127 I Iodine	80 Br Bromine	Fluorine 9 35.5 Ql Chlorine		≦									
Lawrencium 103	Ļ	260	175 Lu Lutetium 71		222 Rn Radon 86	131 Xe Xenon	84 Xr Krypton	20 Ne 10 Neon 10 Argon 18	4 He Helium	0									
)22						6888/02/0	D/N/2022				_								

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (ECESWA) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.